Alternate Low-Rank Matrix Approximation in Latent Semantic Analysis
نویسندگان
چکیده
منابع مشابه
Local Low-Rank Matrix Approximation
Matrix approximation is a common tool in recommendation systems, text mining, and computer vision. A prevalent assumption in constructing matrix approximations is that the partially observed matrix is of low-rank. We propose a new matrix approximation model where we assume instead that the matrix is locally of low-rank, leading to a representation of the observed matrix as a weighted sum of low...
متن کاملMatrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation
It has been observed that the task of matrix assembly in Isogeometric Analysis (IGA) is more challenging than in the case of traditional finite element methods. The additional difficulties associated with IGA are caused by the increased degree and the larger supports of the functions that occur in the integrals defining the matrix elements. Recently we introduced an interpolation-based approach...
متن کاملLow Rank Matrix Approximation in Linear Time
Given a matrix M with n rows and d columns, and fixed k and ε, we present an algorithm that in linear time (i.e., O(N)) computes a k-rank matrix B with approximation error ‖M−B‖2F ≤ (1+ ε)μopt(M, k), where N = nd is the input size, and μopt(M, k) is the minimum error of a k-rank approximation to M. This algorithm succeeds with constant probability, and to our knowledge it is the first linear-ti...
متن کاملSparse Principal Component Analysis via Regularized Low Rank Matrix Approximation
Principal component analysis (PCA) is a widely used tool for data analysis and dimension reduction in applications throughout science and engineering. However, the principal components (PCs) can sometimes be difficult to interpret, because they are linear combinations of all the original variables. To facilitate interpretation, sparse PCA produces modified PCs with sparse loadings, i.e. loading...
متن کاملSchur method for low-rank matrix approximation
The usual way to compute a low-rank approximant of a matrix H is to take its truncated SVD. However, the SVD is computationally expensive. This paper describes a much simpler generalized Schur-type algorithm to compute similar low-rank approximants. For a given matrix H which has d singular values larger than ε, we find all rank d approximants Ĥ such that H − Ĥ has 2-norm less than ε. The set o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Programming
سال: 2019
ISSN: 1058-9244,1875-919X
DOI: 10.1155/2019/1095643