Alternate Low-Rank Matrix Approximation in Latent Semantic Analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Low-Rank Matrix Approximation

Matrix approximation is a common tool in recommendation systems, text mining, and computer vision. A prevalent assumption in constructing matrix approximations is that the partially observed matrix is of low-rank. We propose a new matrix approximation model where we assume instead that the matrix is locally of low-rank, leading to a representation of the observed matrix as a weighted sum of low...

متن کامل

Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation

It has been observed that the task of matrix assembly in Isogeometric Analysis (IGA) is more challenging than in the case of traditional finite element methods. The additional difficulties associated with IGA are caused by the increased degree and the larger supports of the functions that occur in the integrals defining the matrix elements. Recently we introduced an interpolation-based approach...

متن کامل

Low Rank Matrix Approximation in Linear Time

Given a matrix M with n rows and d columns, and fixed k and ε, we present an algorithm that in linear time (i.e., O(N)) computes a k-rank matrix B with approximation error ‖M−B‖2F ≤ (1+ ε)μopt(M, k), where N = nd is the input size, and μopt(M, k) is the minimum error of a k-rank approximation to M. This algorithm succeeds with constant probability, and to our knowledge it is the first linear-ti...

متن کامل

Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation

Principal component analysis (PCA) is a widely used tool for data analysis and dimension reduction in applications throughout science and engineering. However, the principal components (PCs) can sometimes be difficult to interpret, because they are linear combinations of all the original variables. To facilitate interpretation, sparse PCA produces modified PCs with sparse loadings, i.e. loading...

متن کامل

Schur method for low-rank matrix approximation

The usual way to compute a low-rank approximant of a matrix H is to take its truncated SVD. However, the SVD is computationally expensive. This paper describes a much simpler generalized Schur-type algorithm to compute similar low-rank approximants. For a given matrix H which has d singular values larger than ε, we find all rank d approximants Ĥ such that H − Ĥ has 2-norm less than ε. The set o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Programming

سال: 2019

ISSN: 1058-9244,1875-919X

DOI: 10.1155/2019/1095643